high performance computing

arthur whitney kx.com chairman and founder

domain

trading (million events per second)
analysis (trillion orders, quotes, trades, ..)
realtime risk management
surveillance
monte carlo simulation

customers

banks
hedge funds
exchanges
data providers

- -

kdb+ avg db: 350 billion records

kdb+ max: one trillion records

in the last 12 months ...

buy/sell orders: add,modify,delete

400 billion buy records

400 billion sell records

130 billion quotes

10 billion trades

realtime trading

3 billion complex transactions per day peak 300,000 transactions per second

memory ops (not flops)

```
MOPS cache mem flash disk seq 1000m 200m ? 50m rnd 1000m 10m ? 0.0001m
```

```
ROPS (records per second) select 1M-100M insert 1M-10M update 100K+
```

new language

general purpose programming relational database, timeseries analysis, messaging, webserver, ..

always try to take over the entire stack.

observation

good

people are willing to learn new languages for benefits in expression and performance, e.g. our parallel language and rdbms(kdb+)

bad

still hard to use even 10's of cores well except for monte carlo and trivial scans

q (aka kdb+)

parallel programming language parallel primitives, e.g. x+y parallel operators, e.g. x{..}'y

parallel rdbms + timeseries select insert update delete select from trade where 0<deltas price leftjoin, asofjoin, windowjoin, ...

regnms

/ 1.7 seconds (1.4 with 2core) select from aj[`sym`time;trade;quote] where not price within(bid;ask)

/ 2.7 seconds (1.7 with 2core)
select from wj[-3000 1000; `sym`time;
trade;(quote;(max; `ask);(min; `bid))]
where not price within(bid;ask)

price mbs (dec 2007)

```
$10,000,000,000
100,000,000 loans
10,000,000 pools
10,000 deals
100,000 bonds
```

1000 paths (over 360 months each) 1000 cpu grid. 20 hours to 20 minutes.

tpcd example

- I lineitem
- o order
- c customer
- p part
- s supply
- n nation
- r region

sql92 (query 8)

```
select year,sum(case when name='BRAZIL' then rev
else 0 end)/sum(rev) from(
select extract(year from o.d)as year,l.x*(1-l.xd)
as rev,n2.name
from p,s,l,o,c,n n1,n n2,r
where p.p=l.p and s.s=l.s and l.o=o.o and o.c=c.c
and c.n=n1.n and n1.r=r.r and r.name='AMERICA'
and s.n=n2.n and o.d between date'1995-01-01' and
date'1996-12-31' and
p.t='ECONOMY ANODIZED STEEL')t
group by year order by year
```

q (query 8)

```
select rev wavg s.n=`BRAZIL

by o.d.year from l

where
  o.c.n.r=`AMERICA,
  o.d.year in 1995 1996,
  p.t=`$"ECONOMY ANODIZED STEEL"
```

language

functional atom, list, dict short programs byte code interpreter code goes to data reference count (no cycles)

100K c code. 1000 lines.